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Abstract

Any attempt to introduce automation into the monitoring of complex physical
systems must start from a robust anomaly detection capability. This task is far from
straightforward, for a single definition of what constitutes an anomaly is difficult
to come by. In addition, to make the monitoring process efficient, and to avoid
the potential for information overload on human operators, attention focusing must
also be addressed. When an anomaly occurs, more often than not several sensors
are affected, and the partially redundant information they provide can be confusing,
particularly in acrisis situation where aresponse is needed quickly.

Thbe foeus of this paper isanew technique for attention focusing. The technique
involves reasoning about the distance between Iwo frequency distributions, and is
used to detect both anomalous system parameters and “broken” causal dependen-
tics. Thesetwo forms of information together isolate the 1ocus of anomalous
behavior in the system being monitored

Kcy Words: Qualitative Reasoning, and Naive Physics (causal reasoning, monitor-
ing)
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Determining the Loci of Anomalies
Using Minima] Causal Models

Abstract

Any attemptto introduce autoration into the monitoring of complex physical
systems must Start from a robust anomaly detection capability. Thistask is far from
straightforward, for a single de. finition of what constitutes an anomalyisdifficult
[o come by. Inaddition,to make the monitoring process efficient, and [o avoid
[be potential for information overload on human operators, attention focusing must
also be addressed. When an anomaly occurs. more oftenthannot several sensors
arc affected, and the partially redundant information they provide can be confusing,
particularly in a crisis situation where a response is needed quickly

The focus of this paper is a new technique for attention focusing Thetechnique
involves reasoning aboutthe distance between two frequency distributions, and is

used [0 detect both anomalous system parameters and “broken” causal depcnden -
tics. Thesetwo forms of information together isolate the loc us of anomalous
behavior in the system being monitored

1 Introduction

Mission Operations personnel at NASA have the task of detennining, from moment
[0 moment, whether a space platform is exhibiting behavior which is in any way
anomalous, which could disrupt the operation of the platform, and in the worst case,
could represent aloss of ability to achieve mission goals. Our app: each to introducing
automation into real-time systems monitoring is based on two observations: 1) mission
operators employ multiple methods for recognizing anomalies, and 2) mission operators
do not and should not interpret all sensor data al of the time. We seek an approach
for determining from moment to moment which of the available sensor data is most
informative about the presence of anomalies occurring within a system. The work
reported here extends the anomaly detection capability in the SELMON monitoring
system [4; 5] by adding an attention focusing capability.

Other model-based monitoring systems include Dvorak’s MiMic, which performs
robust discrepancy detection for continuous dynamic systems [61, and DeCoste’s DATMI,
which infers system states from incomplete sensor data [3]. This work also complements
other work within NASA on empirical and model-based methods for fault diagnosis of
aerospace platforms [1; 7; 8; 10].

2 Background: The SELMON Approach

How dots a human operator or a machine observing a complex physical system de-
cide when something is going wrong? Abnormal behavior isalways defined as some




kind of departure from normal behavior. Unfortunately, there appears 1o be no single,
crisp definition of “‘normal” behavior. Inthe [traditional monitoring technique of limit
sensing, normal behavior is predefined by nominal value ranges for se nsors. A fun -
damentaltlimitation of this approach is the lack of sensitivity [0 context. In the other
[traditional monitoring technique of discrepancy detection, normal behavior isobtained
by simulating a model of the system being monitored. This approach, while avoiding
the insensitivity to context of the limit sensing approach, has its own limitations. The
approach is only as good as the system model. In addition, normalsystem behav-
ior typically changes withtime, and the model must continue to evolve. Given these
limitations, it can be difficult to distinguish genuine anomalies from errors in the model.

Noting the limitations of the existing monitoring techniques, wc have developed
an approach to monitoring which is designed to make the anomaly detection process
more robust, to reduce the number of undetected anomalies (false negatives). Towards
this end, wc introduce multiple anomaly models, each employing a different notion of
“normal” behavior.

2.1 Anomaly Detection Methods

In [his section, we briefly describe methods that we use to determine when a sensor
is reporting anomalous behavior. The first few measures usc knowledge about each
individual sensor, without knowledge of any relations among, sensors.

Surprise. An appealing way to assess whether current behavior is anomalous or not
is via comparison to past behavior. This is the essence of the surprise measure. It is
designed to highlight a sensor which behaves other than it has historically. Specificaly,
surprise uscs the historical frequency distribution for the sensor in two ways. To
determine the likelihood of the given current value of the sensor, and to examine the
relative likelihoods of different values of the sensor. It is those sensors which display
unlikely values when other values of the sensor are more likely which get a high surprise
score. Surprise is not high if the only reason a sensor’s value is unlikely is that there
are many possible values for the sensor, al equally unlikely.

Alarm. Alarm thresholds for sensors, indexed by operating mode, typicaly are
established through an off-line analysis of system design. The notion of alarm in
SELMON extends the usual one bit of information (the sensor is in alarm or it is not),
and also reports how much of the alarm range has been traversed. Thus a sensor which
has gone deep into alarm gets a higher score than one which has just crossed over the
alarm threshold,

Alarm Anticipation. The alarm anticipation measure in SELMON performs asimple
form of trend analysis to decide whether or not a sensor is expected to bc in alarm in
the future. A straightforward curve it is used to project when the sensor will next cross
an alarm threshold, in either direction. A high scot e means the sensor will soon enter
alarm or will remain there. A low score means the sensor will remain in the nominal
range or emerge from alarm SO0N.

Value Change. A change in the value of a sensor may be indicative of an anomaly.
In order to better assess such an event, the value change measure in Skt MON compares



a givenvalue change to historical value changes scen on that sensor. The score reported
is based on the proportion of previous value changes which were fess than the given
value change. ItiSmaximum when the given value change iSthe greatest value change
seen 10 date on that sensor. It is minimum when no value change has occurred in that
Sensor.

Although many anomalies can be detected by applying anomaly models to the
behavior reported at individual sensors, some can only be detected by reasoning about
interactions occurring in a system and about behavior reported by several sensors.

Deviation. The deviation measure is our extension of the traditional method of
discrepancy detection. As in discrepancy detection, comparisons arc made between
predicted and actual sensor values, and differences are interpreted to be indications of
anomalies. This raw discrepancy is entered into a normalization process identical to
that used for the value change score, and itisthisrepresentation of relative discrepancy
which is reported. The deviation score for a sensor is minimumn if there is no discrepancy
and maximum if the discrepancy between predicted and actual is the greatest seen to
date on that sensor.

Deviation only requires that a simulation be available in any form for generating
sensor value predictions. However, the remaining sensitivity and cascading alarms
measures require the ability to simulate and reason with a causal model of the system
being monitored.

Sensitivity and Cascading Alarms. Sensitiviry nieasures the potential for a large
global perturbation to develop from cur-rent state. Cascading alarms measures the
potential for an alarm sequence to develop from current state. Both of these anomaly
measures USe an event-driven causal simulator [2; 9] to generate predictions about
future states of the system, given current state. Current state is taken [0 be defined
by both the current values of system parameters (not al of which may be sensed) and
the pending events aready resident on the simulator agenda. The measures assign
scores to individual sensors according to how the system parameter corresponding to a
sensor participates in, or influences, the predicted global behavior. A sensor will have
its highest sensitiviry score when behavior originating at that sensor causes all sensors
causally downstream to exhibit their maximum value change to date. A sensor will
have its highest cascading alarms score when behavior originating al that sensor causes
all sensors causally downstream to go into an alarm state.

2.2 Previous Results

In order to assess whether SELMON increased the robustness of the anomaly detection
process, we performed the following experiment: We compared Ski.MON performance
to the performance of the traditional limit sensing technique in selecting critical sensor
subsets specified by a Space Station Environmental Control and Life Support System
(ECI.SS) domain expert, sensors seen by that expert as useful in understanding episodes
of anomalous behavior in actual historical data from ECL.SS testbed operations.

The experiment asked the following specific question: How often did SEL.MON place
a“critical” sensor in the top half of its sensor ordering based onthe anomaly detection




measures?

The performance of a random sensor sclection algorithim would be expected 1o be
about50%; any particular sensor would appear in the lop half of the sensor ordering
about half [he. time.Limit sensing detected the anomalies 76.3% of the time. SELMON
detected the anomalies 95. 1% of the time.

These results show SELMON performing considerably better than the traditional
practice Of limit sensing. They lend credibility [0 our premise thatthe mosteffective
monitoring system is one which incorporates several models of anomalous behavior.
Our aim is o offer a more complete, robust set of techniques for anomaly detection
to make human operators more effective, or to provide the basis for an automated
monitor ing capability.

The following is a specific example of the value added of SELMON.During
an episode in which the ECLSS pre-heater failed, system pressure (which normally
oscillates within a known range) became stable. This “abnormally normal” behav-
ior is not detected by traditional monitoring methods because the system pressure
remains firmly in the nominal range where limit sensing fails [0 trigper. Further-
more. the fluctuating behavior of [he sensor is notmodeled; the. predicted value
is an averaged stable value which fails to trigge: discrepancy dectection.  See [4;
5] for more details on these previous results in evaluating the SE1 .MON approach.

3 Determining the Locus of an Anomaly

A robust anomaly detection capability provides the core for monitoring, but only when
this capability is combined with attention focusing does monitoring become both robust
and efficient. Otherwise, the potential problems of information overload and too many
false positives may defeat the utility of the monitoring system.

The attention focusing technique developed here uses two sources of information:
historical data describing nominal system behavior, and causal infer mation describing
which pairs of sensors are constrained to be correlated, due to the presence of a
dependency. The intuition is that the origin and extent of an anomaly can be determined
if the misbehaving system parameters and the misbehaving causal dependencies can be
determined. Such information also supports reasoning to distinguish whether sensors,
system parameters or mechanisms are misbehaving due to the fact that the signature of
“broken” nodes and arcs in the causal graph are distinguishable. See Figure 1.

For example, the expected signature of an anomalous sensor includes the node
of the sensor itself and the immediately adjacent arcs corresponding to the causal
dependencies that the sensor participates in directly. The intuition is that the actual
system is behaving normally so the locus of “broke.nness” isisolated to the sensor and
the set of adjacent causal dependencies which attempt and fail to reconcile the bogus
value reported by the sensor.

The expected signature of an anomalous system parameter aso includes nodes
and arcs which arc downstream in the causal graph from the node. corresponding to
the system parameter. The intuition here. is that the misbehavior, being in the actual




T~
~ 7) \.

Signature of Anomalous System Pasecnster

Signaturs of Anomatous Senso’

T~

Sigasture of Anomatous Mechaniem

Figure 1: Anomalous System Parameters, Sensors and Mechanisms

system, Will propagate. (Clearly a heuristic interpretation, for not al misbehaviors will
propagate).

The expected signature of an anomalous mechanism also includes arcs and nodes
causally downstream from the arc corresponding to the mechanism, Once again, the
intuition is that the misbehavior is in the system itself, and it will propagate. The way
to distinguish this case from the anomalous systen parameter case is to examine all
input arcs (assuming [here are more than one) to the most causally prior node in the
“broken” subgraph.

3.1 Distance and Causal Distance

While SELMON runs, it computes incrementa frequency distributions for all sensors
being monitored. These frequency distributions can be saved as a method for capturing
behavior from any episode of interest. Of particular interest are historical distributions
which correspond to nominal system behavior.

To identify an anomalous sensor, we apply a distance measure, defined below, to
the frequency distribution which represents recent behavior to the historical frequency
distribution representing nominal behavior. We call the measure simply distance. 10
identify a “broken” causal dependency, we first apply the same distance measure to
the historical frequency distributions for the cause sensor and the effect sensor. This
reference distance is a weak representation of the correlation that exists between the
values of the two sensors due to the causal dependency. Thisreference distanceis then
compared to the distance between the frequency distributions based on recent data of
the same cause sensor and effect sensor. The difference between the reference distance




and the recent distance is the measure of the “brokenness™ of the causal dependency.
WoC call this measure causal distance.

3.2 Desired Properties of the Distance Measure

Define a distribution /2 as the vector d, such that
Vi,0<d, <1

and |
>0
i

For asensor S, we assume that therange of values for [he sensor has been partitioned
into n contiguous subranges of equal size which exhaust the range. We construct a
frequency distribution as a vector {2s of length n, where the value of d, is the frequency
with which S has displayed avalue in the zth subrange.

If our aim was only to compare different frequency distributions of the. same sensor,
we could use a distance measure which required the. number of partitions, or binsin the
two distributions to be equal, and the range of values covered by the distributions to be
the same. However, since our aim is 10 be able to compare the frequency distributions
of different sensors, these conditions must be relaxed.

Before defining the set of desired properties of the distance measure, we define two
special types of frequency distribution. Let ° be the random, or fiat distribution where
Vi, di=1, and entropy is maximized. Let S; be the set of “spike” distributions where
d=1and Vj#i, d;= O, and entropy is minimized.

Itis our view that the flat and spike distributions should be maximally distinguished
by our distance measure.. For what change of behavior seems more startling, more

abnormal, more indicative of a deep anomaly than a sensor which has been perfectly
predictive suddenly offering no basis for prediction, or vice versa?

More generally, we seek a distance measure for frequency distributions with the
following properties:

Distance
VD Dy A(D), D) >0
This property merely defines the measure as a distance measure..

| dentity
vVD,A(D,D)=0

Symmetry

V[)l ])2, A(])] s 1)2) =z A(Dz, 1)|)

Wc do not wish to emphasize whether we are comparing recent data to historical
data or vice versa. Also, we do not wish to emphasize whether we are. comparing cause
data to effect data or vice versa. Wc want our method to be driven by the simplest
causal graphs of undirected dependencies




Distinctness
V1)|‘ 1)2, lvf1)| ‘7'/ 1)2. t’l(’llA([)“ 1)7) >0
The distance measure should distinguish distinc [ frequency distributions

Sike Distinciness

Vi # 3,4A(5:.S;) >0

We wish the set of Sito be distinguishable.

Spike Ordering

Vin A(SI)SI 4 l) < A(Sh SH?)

The distance measure should preserve the fact that [he bins rcpre.sent a discretization
of a corr{inuously-valued parameter, with an implied ordering amongthe values.

Spike Equidistance

Vi ?, jv A(Si’ S. 4 l) :A(S), S)'-Q‘)

There should be no difference in weighting of the spike distributions (assuming bins
of equal width).

Spike/Flat Equidistance

Vi #. j, (S, F)= A®S), F)

The difference between any spike distribution and the flat distribution is to be the
same. (All spike distributions have minimal, and equal entropy. )

Extrema ¥V Dy DVi, A(Dy, D,) <A(S;, F)
Any spike distribution and the flat distribution are to be considered the most dif-

ferent. All other distributions fall in between. Thisis our original and most important
motivation in devising the distance measure.

3.3 The Distance Measure

The distance measure is computed by projecting the two distributions into the two-

dimensional space {f, s}in polar coordinates and taking the euclidian distance between
the projections.

Define the “flatness’ component f (D) of adistribution as follows:
| Entropy(D)
log n
where Entropy(D)isthe familiar

n—1

- >: d; . log d,

i=0

This is simply a normalized entropy measure for the distribution. Note that O <
fun <,
Define the “spikeness™ component s(1)) of a distribution as:
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Figure 2: The function A(D,, D2).

n-1

=\ 1
2 g g

This is simply the centroid value calculation for the distribution. The weighting
factor ¢ will be explained in a moment. Once again, O <s{D)< 1.

Now take|f, 5] to be. polar coordinates|r, O]. This maps I to the origin and the S;
to points aong an arc on the unit circle. See Figure 2.

By inspection, the Spike Distinctness, Spike Ordering and Spike/Flat Equidistance
properties are satisfied. The Spike Equidistance property is satisfied because there is
no unequal weighting applied in the centroid calculation. the Distance, Identity and
Symmetry properties follow from taking the euclidian distance between the projections
of the distributions. The Extrema property is satisfied by taking ¢ =: §. This choice Of
¢ guarantees that A(So, S.-) = A(F, So) = A(F, S.-) == | and al other distances
in the region which is the range of A are by inspection < 1.

The Distinctness property is not satisfied by the function A{(1)y, D,). This is not
surprising because the multi-dimensional space arising from the number of binsin a
distribution is collapsed to a two-dimensional space (f, s]. Thoughts cm how to address
this limitation appear below.

Insensitivity to the number of bins in the two distributions and the range of values
encoded in the distributions is provided by the [f, s] projection function, which abstracts
away from these properties of the distributions.

3.4 Results

In this section, we report on the results of applying the distribution distance measure
10 the task of focusing attention in monitoring. The distribution distance measure is
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Figure 3: The Forward Reactive Control Systern (FFRCS) of the. Space Shuttle.

used to identify misbehaving nodes (distance) and arcs (causal distance) in the causal
graph of the system being monitored, or equivaently, detect and isolate the extent of
anomaliesin the system being monitored.

3.4.1 A Space Shuttle Propulsion Subsystem

Figure 3 shows a schematic for the Forward Reactive Control System (FRCS) of the
Space Shuttle. Helium provides backpressure when valves are open to force propellant
into the manifolds, or jets. There aretwo assemblies as shown, one for fuel and one for
oxidizer. When these substances mix in the jets, spontaneous ignition occurs.

Figure 4 shows a causal graph for a portion of the FRCS of the Space Shuttle. A
full causal graph for the Reactive Control System, comprising the Forward, 1.eft and
Right RCS, was devel oped with the domain expert.

3.4.2 Examples

SELMON was run on seven episodes describing nominal behavior of the FRCS. The
frequency distributions collected during these runs were merged. Reference distances
were computed for sensors participating in causal dependencies.

SELMON was then run on 1*different fault episodes, representing faults such as
leaks, sensor failures and regulator failures. Two of these episodes will be examined
here; however, results were similar for all episodes. In each fault episode, and for
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Figure 4: causal Graph for the FRCS of the Space Shuttle.

each sensor, the distribution distance measure was applied [0 the incremental frequency
distribution collected during the episode and the historical frequency distribution from
the merged nominal episodes. These distances were a measure of the “brokenness’ of
nodes in the causal graph; i.e., instantiations Of the distance measure.

New distances were computed between the distributions corresponding to sensors
participating in causal dependencies. The differences between the new distances and
the reference distances for the dependencies were a measure of the “brokenness’ of
arcsin the causal graph; i.e,, instantiation of the causal drstance measure.

The first episode involves a lesk affecting the first and second manifolds (jets) on
the oxidizer side of the FRCS. The pressures at these two manifolds drop to vapor
pressure. The dependency between these pressures and the pressure in the propellant
tank is altered because the valve between the propellant tank and the manifolds is
closed. Thus there are two anomalous system parameters (the manifold pressures)
and two anomal ous mechanisms (the agreement between the propellant and manifold
pressures when the valve is open).

The distance and causal distance measures computed for nodes and arcs in the
FRCS causal graph reflect this faulty behavior. See Figure 5. (To visualize how the
distribution distance measure circumscribes the extent of anomalies, the coloring of
nodes and the width of arcs in the figure are correlated with the magnitudes of the
associated distance and causal distance scores).

The behavior at the third manifold is due to « known bug in the training simulator
software, which generated the anomaly signatures used in these examples. The apparent
anomaly at the helium tank temperature. has a different explanation. When the valves
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Figure 5: A leak fault

between the propellant tank and the manifolds close, the volume of the total system
decreases. Since pressure remains the same, temperature changes in accordance with
theideal gaslaw. SELMON detects this change.

The second episode involves an overpressurization of the propellant tank dueto a
regulator failure. Onboard software automatically attempts to close the valves which
isolate the helium tank from the propellant tank. One of the valves sticks and remains
open.

The distance and causal distance measures isolate both the misbehaving system
parameters (propellant pressure and valve status indicators) and the altered relationships
between the helium and propellant tank pressures and between the propellant tank
pressure and the valve status indicators. Overpressurization of the propellant tank also
alters the usual relation between propellant tank pressure and manifold pressures. See
Figure 6. Note that the software bug affecting predicted behavior at the third manifold
has manifested again.

4 Discussion

The distance and causal distance measures based on the distribution distance measure
combine two concepts: 1) empirical data alone can be an effective model of behavior,
and 2) the existence of a causal dependency betwee n two parameters implies that their
values are somehow correlated. The causal distance measure constructs amodel of the
correlation between two causaly related parameters, capturing the general notion of
congtraint in an admittedly abstract manner. Nonetheless, the.se. models of constraint
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arising from causality provide surprising discriminatory power for determining which
causal dependencies (and corresponding system mechanisms) are misbehaving. (In the
distance measure for detecting misbehaving system parameters, we are smply using
the degenerate constraint of expected equality between historical and recent behavior.)

The approach described in this paper has usability advantages over other forms
of model-based reasoning. The overhead involved in construct ng the causal and
behavioral model of the system is minimal. The behavioral model is derived directly
from actual data; no offline modeling is required. The causal model is of the simplest
form, describing only the existence of dependencies. For the Shuttle RCS, a 198-node
causal graph was constructed in a single one and one half hour session between the
author and the domain expert.

4.1 Monitoring Architecture

The attention focusing capability provided by the distance and causal distance measures
can be combined with the multiple-viewpoint anomaly detection capability already
developed in SELMON to construct a general monitoring architecture.

The multiple anomaly measures (including the distance and causal distance mea-
sures, which are anomaly detection measures in their own right) provide continuous
anomaly detection capability. Al of these measures are normalized to the range [0, 1]
so their sensitivity, individually or collectively, can be fine-tuned for the behavior of
particular monitored systems. Whenever a detected anomaly is announced, the extent
of the anomaly is isolated by applying the results of the distance and causal distance
measures to the causal graph of the system. If SEI MON iS supporting a human oper-
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ator, the operator’s attentionis focused on thelocus Of the anomaly, rather than the
potentially long and confusing list of the individual manifestations of the anomaly.

42 Alternate Distance Measures

Other distance measures derived from more standard statistical concepts certainly are
possible. For example, the mean and standard deviation of a distribution might form
(Lic basis for the projection space of the function A. Mog[ of the desired properties
for the distance measure can be achieved, with the notable exception of the Kxtrema
property. (Consider three distributions: [he fiat distribution F', a spike distribution Sq ,
and a distribution with equal peaks at the. lowest- and highest-valued binsi = O and
i ==n—1. The mean is the same for these distributions and the standard deviation is
least for the spike distribution. However, the flat distribution does not have the greatest
standard deviation, violating the Extrema property. Satisfying this property isaprime
motivation for our work. Nonetheless a performance comparison of a distance measure
based on the mean and standard deviation of adistribution (or other features) would be
useful.

The x* measure of the difference between two distributions is another possibility.
However, the standard definition of X’ would have to be modified to accommodate

not only distributions with different numbers of data points, but also distributions with
different numbers of bins.

5 Future Work

In addition to exploring alternate distance measures, several issues need to be examined
to continue the evaluation of the attention focusing technique based on the distance
measure, and its utility in monitoring.

We need to understand the sensitivity of the technique to how sensor value ranges
are partitioned. Clearly the discriminatory power of the distribution distance measure
isrelated to the resolution provided by the number of bins and the bin boundaries. The
results reported here are encouraging for the number of FRCS sensor bins were in many
cases as low as three and in no cases more than eight. Separately, we are developing
a density-based auto-binning technique which selects bin boundaries which the data
naturally reflect. Results have been promising and we hope to soon remove this element
of arbitrariness in our approach.

Wc need to understand the suitability of the technique for systems which have
many modes or configurations. We would expect that the discriminatory power of the
technique would be compromised if the distributions describing behaviors from different
modes were merged. Thus the technique requires that historical data representing
nomina behavior is separable for each mode. If there are many modes, at the very
least there is a data management task. A capability for tracking mode transitions is
also required. We are exploring the use of unsupervised learning to identify and build
classifiersfor system modes directly from historical data.
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We need to understand the consequences of the Distinciness property not being
satisfied by the distributiondistance measure. Of concernis whether or not distributions
wc wish to distinguish arc infact being distinguished. The judicial introduction of
additional components (e.g., the number of localmaxima in afrequency distribution)
to the distribution projection space | f. S| mmay be required to enhance discriminability.

6 Applications

SELMON is being applied at the NASA Johnson Space Center as anonitoring tool for
Space Shuttle Operations. Current application efforts include the onc for the Propulsion
(PROP) fiight control discipline reported on here, and ones for the Guidance, Navigation
& Control (GNC) discipline, the Mechanica (MMACS) discipline and the Thermal
(EECOM) discipline. An operational SELMON prototype has been available since
[he recent Hubble Repair mission. SEL.MON runs in a client-server environment and
processes change-only data from [he telemetry server on hundreds of sensorsin real
tme.

At the Jet Propulsion Laboratory, wc arc looking atthe problem of onboard au-
tomated downlink determination for the Pluto Express pre-project. There has aso
been a general surge of interest recently in spacecraft autonomy. The challenge is to
devise methods for robustly detecting and recovering from anomalies onboard. When
onboard software is unable to effect a recovery, the spacecraft requests assistance from
the ground and prepares an anomaly report to bootstrap the analysis of the ground
experts. The anomaly detection and attention focusing capabilities of SELMON may be
well-matched to these tasks.

7 Summary

We have described the properties and performance of a distance measure used to identify
misbehavior at sensor locations and across mechanisms in a system being monitored.
The technigque enables the locus of an anomal y to be determined. This attention foeusing
capability is combined with an anomaly detection capability in a robust, efficient and
informative monitoring system, which is being appl ied in mission operations at NASA.
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